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Reaction-diffusion dynamics in an oscillatory medium of finite size: Pseudoreflection of waves
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Wave propagation in an oscillatory reaction-diffusion, one-dimensional domain of finite size with Dirichlet
boundary conditions is analyzed. For sizes below a certain threshold length, the medium cannot sustain wave
motion. Above this threshold we find that for a relatively small domain extent, a strong correlation exists
between the dynamics of the system and its size. This correlation gradually disappears with increasing domain
size. For still larger sizes, we observe an effect of wpseudo reflectiomear the boundary. It is shown both
numerically and analytically that pseudoreflected waves are periodically generated inside the medium by a fast,
self-generated “source” near the boundary.
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I. INTRODUCTION Il. THE MODEL

A simple one-dimensiondllD) reaction-diffusion system
Oscillatory (limit cycle, LC) regimes appear in a variety is used here, modeled by two coupled partial differential
of areas of science and technology, from semiconductor elegguations:
tronics to oscillating chemical reactions and biologee,

e.g.,[1,2] and references thergirnThe most notable example v _ Fp)—

in a living system is the sinus node of the he@t, which at =t T(0) =W,

functions as a natural pacemaker for the electric stimulation

(action potentigl of the organ. At the edges of such a region oW

there usually appears either an excitable domain or a domain —p - e(v—dw). (1)

devoid of any excitability. Here we concentrate on the LC/

excit.able interface anq consider the guestion of “wave. reHerev(x,t) is anactivator, embodying theaction potential
flgct|qn” there. Reflections of waves in a general _reactlon-in neurons or in the heany(x,t) is aninhibitor, sometimes
diffusion system are rare due to the refractory period of the:gjled therefractoriness The diffusion coefficienD, usually
pulse, which inhibits such occurrences. Noted exceptions tenyltiplying the ternw,,, was omitted from Eq(1), meaning
this inhibition are found in Only a narrow range of parameterthat all |ength variables are measured in units/a:_ In this
values corresponding to an excitable regime near a subcritsystemp is the only diffusing variablez is a(usually small
cal Hopf bifurcation. In this case the collision of a propagat-parameter measuring the ratio of time constants between ac-
ing pulse with a spatial nonuniformity results in pulse split- tivator and inhibitord is a parameter. The timds measured
ting. The new pulses begin to move in opposite directionsin units of the time constant of the activator Note that all
and the backward propagation may be considered as a rearameters and variables are dimensionless. The nonlinear
flected (or echg pulse. These reflections occur at the inter-term f(v) is chosen here in two forms. The first is a cubic
face between two excitable regions, as well as in an excitablpolynomial in v, corresponding to the FitzHugh-Nagumo
medium with zero-flux boundary, and were analyzed in sev{FHN) model[12]:
eral papers[4-8]. The question of reflectecutowaves
(waves with refractory edgesn LC media has not been f(v)=v(v—a)(1l—-v), 2
treated so far. The only reflected waves studied in such a
medium are of the soliton type in a Ginzburg-Landau systenwherea is the excitability parametef13]. Roughly speak-
[9,10. ing, a<0 produces LC behavior, whila>0 yields an ex-

We show in this paper that reflections, or ratipmeu- ~ Citable case. The second form of the nonlinear téfn) is a
doreflections of autowaves are quite abundant in LC do- Piecewise linear version, namely,
mains, and are due to a fast wave source originating near the

interface, inside the medium. The tepseudoreflectionsas ki Ju[<ve,

(v)=

chosen because the mechanism of this effect is quite different —kyu+resgnv) if |v|>ve,
from that of ordinary reflections. In addition, LC domains of
short extent sustaining homogeneous bulk oscillations are ve=rcki/(ky+ksy), andr,=0.5. 3)

analyzed, showing that the nature of the wave dynamics

strongly depends on the domain size. These phenomena &r@e latter version is more amenable to analytical solutions.
treated both numerically and analytically. A preliminary re- The region of space considered here is defined to be oscilla-
sult was published elsewhef#&1]. tory[a<0 in Eq.(2)] for 0<x<L, and excitable4>0) for
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Xx<0 andx>L. We use Dirichlet boundary conditions at  *-° @ | (b)
=0 andL (which is equivalent to assuming thatis very
large beyond the boundary > \ h
The numerical integration of the differential systdf) 0 l/“‘ o l/ l.
was carried out using the unconditionally stable Crank- 08
Nicolson method. The values of time and space intervals, ° t €0 0 t 650

used for all numerical experiments, wefd and Ax=1.
Control runs carried out with smaller grid values invariably
showed the same results. For more details, see Refsl7).

In this paper we usg andi interchangeablyX=iAx).

IIl. MINIMUM SIZE OF A LC MEDIUM

0 b4 10
First we follow the method of Keener and Sneyd to obtain
the minimal length of a LC region with Dirichlet boundary  FIG. 1. Dynamics of small LC regiond=HN model witha=
conditions(BC) which can sustain oscillations. Our descrip- —0.16, £=0.005,d=3). (a) L=7: the initial perturbation van-

tion will be brief. For more details sdé4]. ishes;v(t) is shown atx=3. (b) L=10: the medium sustains an
Consider Egs(1) and(2). For a steady state solution we oscillating responsey(t) is shown atx=>5. (c) L=10: monotonic
have bulk oscillations of the mediunx profiles of the activator are
shown only during the time interval whenincreases from zero to
Uyxt f(vg) —wWo=0, its maximum.
Vo Vix=(at+u)V, V(0)=V(L)=0. ®
WOZE, (4)

Its solution is V(x)=Asin\Zx, with Z=—a—de and
and a similar system for Eqél) and (3). The only solution VZL=n#. Hence, the minimal length, given hy=1, is
of Eq. (4) with Dirichlet BC isvg=wy=0. This is indeed the L,,1=7/J—a—de. Alternatively, for the case of a piece-
only solution of Eq.(1) for small values ofL. The appear- wise linearf(v), Eq.(3), we havef’|,=0, u=0, leading to
ance of oscillating solutions occurs only for lardewalues. L in o= Ky.
We thus consider the following perturbation solution near the \wjith the numerical values used hefeubic f(v): a=
steady state: —0.16, £,=0.005,d=23; piecewise lineaf(v): £,=0.02,
k,;=0.1), the two versions of ,, are L i, 1~8, andL yi, 2
~10. Numerical simulations show, in fact, that o« 8 the
only asymptotic solution i =w=0, while oscillating solu-
tions are obtained for =8 with the cubicf(v). Figure 1a)
describes the time evolution of an initiating pulse,
launched at timeé=0, and at site<=3 of a medium extend-
ing in the range &x=<L=7. This pulse is a narrow Gauss-
V—-W, ian in space, and lasts for o in time. An action potential
0 spatial wave is thus generated in the middle of the region and
transferred to the boundaries, but the entire spatial wave pro-
AW=g(V—-dW), file gradually shrinks and eventually disappears after a rela-
tively long period of time(only sitex=3 is shown. Figure
or 1(b) depicts the situation wheh=10, showing the pulse
shape as a function of time at poixt5. Figure 1c) depicts
V=pnV, (6) the wave amplitude as a function of space at different times.
Ui, It is seen that the whole medium oscillates in unigphase
locking), a phenomenon well known for LC media. Similar
where results are obtained for the piecewise linear system.

v=V(x)e\, 0<x<L,
w=W(x)eM. )

Using Eq.(5) in Eqg. (1) leads to

of
AV= Vxx+ 5

&
PN g Of M (sd— pk+e(1-dp) =0, IV. MONOTONIC BULK OSCILLATIONS

7) To clarify the influence of the size (>L,;,) of the LC
medium on the parameters of its oscillations, let us first con-
A Hopf bifurcation occurs wher becomes purely imagi- sider the piecewise linear system with Dirichlet BC. When
nary, i.e., whenu=de. As noted in Ref[14], Eq.(6) is a the medium size slightly exceeds thg;, value, the motion
time-independent Schdinger equation with the eigenvalue can be described as amost in-phasgmonotonic bulk
w. In our case, the cubi€(v) given by Eq.(2) yields f'|,  oscillation. More precisely, the motion can be envisaged by
=—a, and Eq.(6) with the Dirichlet BC becomes considering the medium points as oscillators having the same
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FIG. 2. Phase portraits aegular isochrones-lines indicating L

location of first seven medium points, starting from the Dirichlet FIG. 3. Analytic solutions corresponding to the piecewise linear

BC at a given tlm_e(thg piecewise linear model .Wlthl:o'l’ I_<2 model; shown are the maximum valueswfamplitudes for dif-
=—1, £=0.02). Time interval between nearest isochrones is cons

. . - . . ferent medium sizest. =10,12,14, andA=0,0.03,0.05[Eq. (9)],
§tant, 10 t'me units, and=12. The dewatlon_fror_n linearity of the_ respectively. An increase ih results in the increase [ofqbotr)1] the
|sqchrone lines suggests out-of-phase oscillations of the medlur(I;{mplitude and the period of the monotonic bulk oscillations. The
points. small circles represent exact numerical solutigmsaximag of
frequency but slightly different phases. To show this we haveEq' -
calculated in the phase plane,(v) the so-called regular gpatial positions. These trajectories are situated along, or
isochrones, i.e., the lines displaying the valueswof) at  yery close to, the linear null-cline sections of negative slope
every point of the medium at specific selected tifi&S].  for a longer part of the oscillation period. Since the move-
The slight waviness of the outer edges of the isochrone linegent there is much slower, the period increases.
indicates that the motion is not perfectly in phdsee, e.g., We have also calculated a similar dependence of the pe-
Fig. 2. Note that a particular point of an isochrone ray ac-riod T on L for the FHN systen{Fig. 4(b)]. The function
tually represents the values of,(v) at two spatial points, optained is slightly nonmonotonic; namely, the valuesTof
say,x andL —x; this is due to mirror symmetry of the spatial fjrst decrease with increasirlg resuming their increase for
profile. larger L's (as in the piecewise linear systgnThis initial

For comparatively small sizes of the propagation mediumanomalous” decrease of can be explained by comparing
(Fig. 2), phase variations are small, and the isochrones agshase trajectories corresponding to different valuds @ig.
pear almost linear. Since isochroAgs the one that includes 5). The oscillations of the less extended medium exhibit slow
the absolute maximum of the value of we specifically use motions in the vicinity of the unstable fixed poif®,0). A
a linear approximation thereof in order to calculate it analyti-small increase of. results in a displacement of the phase
cally. The time derivative is zero along this isochrone, andrajectories away from the fixed point and a corresponding
the following approximate ordinary differential equation candecrease off. Further increase df brings the motion back
be obtained: into the dominance of the null-clines, and a “reguldrvs L

dependence is observed.
kv for |v|<wve,

O=vy—Av+ 9

—kv+resgnv) for |v|>ve, V. PSEUDOREFLECTED WAVES

. . . A further increase in the length of the LC domain results
where A= (w/v)|, s the appropriate slope of the isoch- i, the appearance of an interesting effect which we call pseu-
rone. doreflection at the Dirichlet boundafyig. 6). We use this

Analytic solutions of Eq(9) for different domain size& term to emphasize that the mechanism of the creation of
are shown in Fig. 3. The middle sections of each curve apthese pseudoreflected wau@RW's) is quite different from
pear to be approximately constant. The largetthe more the usual reflection mechanism of optical or acoustic waves.
extended is this section. Such dynamics is reasonable sindhe PRW phenomenon for a LC medium was previously
increasing. reduces the influence of boundaries on the bulkobserved with different boundary nonuniformitieee[11]).

It is important to note that this increase bfresults in the  However, the limiting case presented here, i.e., a uniform LC
increase of both the common peridd of the oscillating domain with Dirichlet BC, allows us to gain a better under-
points (see below and its maximum amplitudé ., (albeit  standing based on an analytical description, as well as some
rather slightly in the middle of the domain. The monotonic important features of the phenomenon.

dependence of on L for the case of the piecewise linear  Along with the usual reversal of propagation direction,
model is presented in Fig(@). For this system the change of the pseudoreflection exhibits the unusual phenomena of de-
period can be understood as follows: extended domains irereases of the wavelength, the amplitude, and the period of
duce larger phase-plane trajectories, at least for the centrakcillations. These features, and especially the change of pe-
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FIG. 4. Variation of the period of monotonic bulk oscillations (e
as a function of the medium size (a) The piecewise linear model
with k;=0.1, k,=—1, £=0.02; (b) FHN model witha=—0.16,
£=0.005,d= 3. Note the nonmonotonic behavior in the latter case.
riod, indicate that other sources of reflected waves have
emerged. These higher-frequency sour¢ésvers appear -
close to the Dirichlet boundaries. The piecewise linear model <
has been utilized to gain a quantitative description of this
effect.
Our simulations demonstrate that close to each boundary
of the LC medium there exists a spatial transition zone con-
sisting of oscillating points of the medium with monotoni- ]
cally increasing amplitudes away from the boundary. This -0,02
~-0.52 o D 1.00

zone can be looked upon as an array of coupled nonuniform
oscillators with different natural frequencies, which synchro-
nize to assume a common frequ_ency, but move out of phase FIG. 5. The FHN model: phase portraits of the oscillations at the
with each other. Increasing the size of the medium causes th:%

. . " nters of spatial domains of different sizé®. L =8, resulting in
phase differences between the points of the transition zone - 184 time steps. Here the slow motion near the unstable fixed

increase, eventually Ieladin.g to the generation of propagatingoint (®) is responsible for the comparatively large (b) L=9,
waves. Wave generation is well known to appear even iffesyiting inT =182 time steps. In spite of a larger limit cycle loop,
infinite uniform LC media, were the wave profile is com- the value of T decreases because the motion becomes more de-
monly explained by a symmetry breaking bifurcati@16. tached from the fixed pointc) L= 10, andT increases back to 184

In the transition region, however, the oscillators are all dif-time steps. The still larger limit cycle loop approaches the null
ferent, and one of them eventually assumes the role of thélines (zero-velocity solutions leading to slower motion in their
medium “driver.” If its precise location were known, one vicinity.
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FIG. 7. Dynamics of a single oscillator, made of two uniformly
oscillating grid points with Dirichlet BC. Analytical solutions are
shown for the piecewise linear model, coinciding with exact nu-
merical results(a) The wave form of the SO during one period;
diffusion coefficientD = 0. (b) The SO period as a function &f. (c)
The SO amplitude as a function &f. (d) The SO period vs its
amplitude.

VI. THE INTERNAL (SELF-GENERATED) DRIVER
OF PSEUDOREFLECTIONS

In order to simulate SO behavior, a very narrow space
domain is examined in this section, wherendw are non-
zero only on two grid pointgone interval. Since the depen-
dence on the diffusion coefficiebt is quite important in this
context, it will be explicitly reinstated in the equations. For
Dirichlet BC, therefore, we have;=0, w;=0 at the points
i=0,3, while ati=1,2,v;#0, w;#0. Evidently, since_ i, »
is expressed in units ofD in Sec. IlI, the diffusion constant

FIG. 6. The pseudoreflected waves in a large-sized LC mediunshould be drastically lowered for an oscillatory solution to be
with Dirichlet BC for the piecewise linear model with=0.1, k, possible.
=—1, £=0.02. Time increases from bottom to to@ Regular For the simple SO system, an analytical solution is of
waves propagating away from the medium center where a localizedourse possible. To see this we first show that the diffusion
initial pulse was launched(b) these waves drop to zero at the term can be converted to a simpler form. Consider the finite

boundaries, but eventually a “source” of pseudoreflected waveslifference version of this term withx=1. Sincev,=0 and
appears near the boundary, inside the medium, as explained in thg =3 ,, we have

text, sending waves in both directions. The inward moving trains
are annihilated by collisions with the regular waves. However, be-
cause the frequency of the PRWs is higher, the point of annihilation
gradually shifts toward the medium centér) After a long time
only the PRWs are observedd) A stroboscopic picture of the A similar result is obtained for=2. We can therefore re-
propagating and pseudoreflected waves; time difference betwegflaceDuv,, by —Duv, or to changek, and —k, of the piece-
the strobes is 10 time units. wise linear system by\k=—D. The piecewise linear sys-
tem (with d=0) thus becomes

would be able to describe the behavior of the entire LC me-
dium by the dynamics of this single oscillat¢8O). The
“natural” frequency of the medium driver should coincide

=0
0 X 600

DUXX|i:1:D(U2+UO_2U1):_DU]_. (10)

(k,—D)v for |v|<ve,

v=—w+

. : ; —k,— + >
with the common frequency of all other oscillators in the (—ke=D)v+resgriv) for fv[>ve,
medium, and the location of the driver should determine the
direction of the traveling waves. W=¢gv. (11)
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FIG. 8. Determining the position of the PRW “driver” in a
piecewise linear model with =100. (a) Spatial plot of the PRW at
t=830 time units; parallel lines near the left boundaiy6—12)
indicate seven grid pointsb) local dynamics of these points in the
vicinity of their maxima. Point 8 is the first to reach the maximum
among its neighbors, thus “enforcing” its motion on them.

FIG. 9. FHN-based simulations of a “mosaic” model: five sepa-
rate LC sections of different sizes inside a uniform excitable me-
dium. The section witl. =8 has the highest frequency according to
Fig. 4(b), thus becoming the medium driver. After a relatively long
transient its natural period of 202 time units eventually dominates
the whole medium. Time increases from bottom to top. Note that,
unlike the case depicted in Fig(}, here the boundary condition is

Taking the derivative of the first equation and using the sec . ‘ o )
g d g not of Dirichlet type; hence this period is 202 instead of 184.

ond, we obtain

v=—ev+Kbv, at tzztl_le: U= " Ug¢-
where The solution properties are shown in Figgh)7and 7c). It is
clear that both the amplitude and period of oscillations
(ky—D) for |v[<v.  (denoted byv,), change withD. Note that heré. ., =3 (in units of YD) and
“|(=k,=D) for [v|<v, (denoted byv,). no nonzero solutions exist fd=0.1, in agreement with
(120  Sec. lll. Figure 7d) shows the functional dependence be-

tween the amplitude and the period of the oscillations.af
Since in our cas® <k, the solution forlv|<v. becomes is seen that for a SO the higher the frequefioyer T) the
lower is the amplitude. Now, in order to drive a whole “set”
vi=Ae 1 P2 cosyt+Aea PIU25inyt,  (13)  of oscillators, a SO should have both a high amplitude and a
high frequency. It is therefore a question of compromise
where t is measured from the time whem=v. and ¥  which oscillator of a set will eventually “take over” and

=\/e—0.25(k;—D)?. For|v|>v, the solution is drive the whole oscillatory region.
In order to check which grid point of thextendedystem
v =C eM'+Cpet?, (14 becomes the source of the “reflected” oscillatioftsiver),
Fig. 8 shows the time dependence igf, i=6-11, where
wherex,; ,=0.9 — (ko + D) = V(kp +D)"—4e|. Vi macUe (Vi max=Vc IS Situated between=3 and 4 of an
The following conditions must be satisfi¢Big. 7(a)]: oscillatory region of lengtt.=100. Since the diffusion cur-
rent is proportional tov, it is the first grid point where
at t=0: v,=v,=v, and ) :(?U“ ; reaches its maximum relative to both its neighbors, to the left
atl, dti, and to the right, that will drive the waves in both directions.

In Fig. 8(b) this point appears to be &t 8, making this site
the “dominant SO.”
; Simulations show that varying the total lendtidoes not
t change this behavior, namely, the “sources” reside at the

tt=t = d&vI
at (=14: = and ——
1 V)= U¢ ot

_ (9U||
ot

t
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same point$=8 andL — 8. The consistency of this result is presence of excitable cells inside the sinus node is postulated
supported by the following argument: The maximum ampli-[18]. A pacemaker is represented by the cluster of oscillating
tude (0.543 dimensionless unjtef vg of the extended sys- cells, which determines the frequency of the SN in-phase
tem agrees very well with the SCFig. 7(d)], having the oscillations. Our results support the possibility of such a
same period50 time stepgas that of the waves of Fig. 8.  pacemaker and indicate that this could rather be a section of
comparatively small size, although larger tHap,, (see Fig.
4), which has the highest oscillation frequency among its
The features of the dynamics of a LC medium of finite neighborg(Fig. 9). It also follows that a relatively smalbut
length with Dirichlet BC have been discussed. Increasing thétill aboveL,,) ectopic source in the heart might be more
medium length leads to the following behavidg) for L dangerous than a larger one, because it could oscillate with a
<L, NO sustained oscillations are preséhy;aboveL i, higher frequency and lead to serious cardiac arrhythmias.
a gradual increase of phase mismatch is observed; (antil Another important problem of SN oscillations is the possi-
the appearance of a propagating train of waves and thebility of wave propagation there, as opposed to uni§on
pseudoreflections. The mechanism of the PRW generatiophasg oscillations. This type of wave motion was previously
can be envisaged as due to a fast wave “source” or “driver”discussed in some papeisee, e.9.[19]). These results are
inside the medium, near the boundary. The question of anonsistent with our isochrone-based interpretation showing
internal driver of a LC medium is of general importance.the development of out-of-phagseavelike motion.
Here we have tried to define the properties of such an entity: The phenomenon of a source of pseudoreflections can, for
it is the oscillator that reaches its maximunvalue prior to  instance, be applied to the locomotion of a primitive fish
all its neighbors. Thus, via diffusion it can influence the (lamprey, which can be modeled as a nonuniform LC me-
neighboring oscillators on both sides, and become the souraium with an internal drivetthe so-called master oscillajor
(driver) of the pseudoreflected waves. This oscillator is faster than its neighbors, and thus deter-
We wish to point out a number of possible important ap-mines the direction of wave propagation in an array of simi-
plications of our findings. The strong dependence of the pelar surrounding oscillators having lower natural frequencies
riod of the in-phase oscillations upon the medium size may20]. Our results indicate that the driver should reside only
be of interest for various problems. For example, the probnear either end of a fish of finite length, where Dirichlet-like
lem of an internal pacemaker of the sinus né8l) arises in  boundary conditions exist, and should force the lamprey to
the framework of the so-called mosaic model, where themove in each direction.

VII. DISCUSSION
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