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Reaction-diffusion dynamics in an oscillatory medium of finite size: Pseudoreflection of waves
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Wave propagation in an oscillatory reaction-diffusion, one-dimensional domain of finite size with Dirichlet
boundary conditions is analyzed. For sizes below a certain threshold length, the medium cannot sustain wave
motion. Above this threshold we find that for a relatively small domain extent, a strong correlation exists
between the dynamics of the system and its size. This correlation gradually disappears with increasing domain
size. For still larger sizes, we observe an effect of wavepseudo reflectionnear the boundary. It is shown both
numerically and analytically that pseudoreflected waves are periodically generated inside the medium by a fast,
self-generated ‘‘source’’ near the boundary.
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I. INTRODUCTION

Oscillatory ~limit cycle, LC! regimes appear in a variet
of areas of science and technology, from semiconductor e
tronics to oscillating chemical reactions and biology~see,
e.g.,@1,2# and references therein!. The most notable exampl
in a living system is the sinus node of the heart@3#, which
functions as a natural pacemaker for the electric stimula
~action potential! of the organ. At the edges of such a regi
there usually appears either an excitable domain or a dom
devoid of any excitability. Here we concentrate on the L
excitable interface and consider the question of ‘‘wave
flection’’ there. Reflections of waves in a general reactio
diffusion system are rare due to the refractory period of
pulse, which inhibits such occurrences. Noted exception
this inhibition are found in only a narrow range of parame
values corresponding to an excitable regime near a subc
cal Hopf bifurcation. In this case the collision of a propag
ing pulse with a spatial nonuniformity results in pulse sp
ting. The new pulses begin to move in opposite directio
and the backward propagation may be considered as a
flected~or echo! pulse. These reflections occur at the int
face between two excitable regions, as well as in an excita
medium with zero-flux boundary, and were analyzed in s
eral papers@4–8#. The question of reflectedautowaves
~waves with refractory edges! in LC media has not been
treated so far. The only reflected waves studied in suc
medium are of the soliton type in a Ginzburg-Landau syst
@9,10#.

We show in this paper that reflections, or ratherpseu-
doreflections, of autowaves are quite abundant in LC d
mains, and are due to a fast wave source originating nea
interface, inside the medium. The termpseudoreflectionswas
chosen because the mechanism of this effect is quite diffe
from that of ordinary reflections. In addition, LC domains
short extent sustaining homogeneous bulk oscillations
analyzed, showing that the nature of the wave dynam
strongly depends on the domain size. These phenomen
treated both numerically and analytically. A preliminary r
sult was published elsewhere@11#.
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II. THE MODEL

A simple one-dimensional~1D! reaction-diffusion system
is used here, modeled by two coupled partial differen
equations:

]v
]t

5vxx1 f ~v !2w,

]w

]t
5«~v2dw!. ~1!

Herev(x,t) is anactivator, embodying theaction potential
in neurons or in the heart;w(x,t) is an inhibitor, sometimes
called therefractoriness. The diffusion coefficientD, usually
multiplying the termvxx , was omitted from Eq.~1!, meaning
that all length variables are measured in units ofAD. In this
system,v is the only diffusing variable;« is a~usually small!
parameter measuring the ratio of time constants between
tivator and inhibitor;d is a parameter. The timet is measured
in units of the time constant of the activatorv. Note that all
parameters and variables are dimensionless. The nonli
term f (v) is chosen here in two forms. The first is a cub
polynomial in v, corresponding to the FitzHugh-Nagum
~FHN! model @12#:

f ~v !5v~v2a!~12v !, ~2!

wherea is the excitability parameter@13#. Roughly speak-
ing, a,0 produces LC behavior, whilea.0 yields an ex-
citable case. The second form of the nonlinear termf (v) is a
piecewise linear version, namely,

f ~v !5H k1v if uvu,vc ,

2k2v1r c sgn~v ! if uvu.vc ,

vc5r ck1 /~k11k2!, and r c50.5. ~3!

The latter version is more amenable to analytical solutio
The region of space considered here is defined to be osc
tory @a,0 in Eq.~2!# for 0<x<L, and excitable (a.0) for
©2003 The American Physical Society12-1
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x,0 andx.L. We use Dirichlet boundary conditions atx
50 andL ~which is equivalent to assuming thata is very
large beyond the boundary!.

The numerical integration of the differential system~1!
was carried out using the unconditionally stable Cra
Nicolson method. The values of time and space interv
used for all numerical experiments, wereDt and Dx51.
Control runs carried out with smaller grid values invariab
showed the same results. For more details, see Refs.@13,17#.
In this paper we usex and i interchangeably (x5 iDx).

III. MINIMUM SIZE OF A LC MEDIUM

First we follow the method of Keener and Sneyd to obt
the minimal length of a LC region with Dirichlet boundar
conditions~BC! which can sustain oscillations. Our descri
tion will be brief. For more details see@14#.

Consider Eqs.~1! and ~2!. For a steady state solution w
have

vxx1 f ~v0!2w050,

w05
v0

d
, ~4!

and a similar system for Eqs.~1! and ~3!. The only solution
of Eq. ~4! with Dirichlet BC isv05w050. This is indeed the
only solution of Eq.~1! for small values ofL. The appear-
ance of oscillating solutions occurs only for largerL values.
We thus consider the following perturbation solution near
steady state:

v5V~x!elt, 0,x,L,

w5W~x!elt. ~5!

Using Eq.~5! in Eq. ~1! leads to

lV5Vxx1
] f

]vU
0

V2W,

lW5«~V2dW!,

or

Vxx1
] f

]vU
0

V5mV, ~6!

where

m5l1
«

l1d«
or l21~«d2m!l1«~12dm!50.

~7!

A Hopf bifurcation occurs whenl becomes purely imagi
nary, i.e., whenm5d«. As noted in Ref.@14#, Eq. ~6! is a
time-independent Schro¨dinger equation with the eigenvalu
m. In our case, the cubicf (v) given by Eq.~2! yields f 8u0
52a, and Eq.~6! with the Dirichlet BC becomes
03621
-
s,

e

Vxx5~a1m!V, V~0!5V~L !50. ~8!

Its solution is V(x)5A sinAZx, with Z52a2d« and
AZL5np. Hence, the minimal length, given byn51, is
Lmin 15p/A2a2d«. Alternatively, for the case of a piece
wise linearf (v), Eq. ~3!, we havef 8u050, m50, leading to

Lmin 25p/Ak1.
With the numerical values used here@cubic f (v): a5

20.16, «150.005,d53; piecewise linearf (v): «250.02,
k150.1), the two versions ofLmin are Lmin 1;8, andLmin 2
;10. Numerical simulations show, in fact, that forL,8 the
only asymptotic solution isv5w50, while oscillating solu-
tions are obtained forL>8 with the cubicf (v). Figure 1~a!
describes the time evolution of an initiatingv pulse,
launched at timet50, and at sitex53 of a medium extend-
ing in the range 0<x<L57. This pulse is a narrow Gauss
ian in space, and lasts for oneDt in time. An action potential
spatial wave is thus generated in the middle of the region
transferred to the boundaries, but the entire spatial wave
file gradually shrinks and eventually disappears after a r
tively long period of time~only sitex53 is shown!. Figure
1~b! depicts the situation whenL510, showing the pulse
shape as a function of time at pointx55. Figure 1~c! depicts
the wave amplitude as a function of space at different tim
It is seen that the whole medium oscillates in unison~phase
locking!, a phenomenon well known for LC media. Simila
results are obtained for the piecewise linear system.

IV. MONOTONIC BULK OSCILLATIONS

To clarify the influence of the sizeL (.Lmin) of the LC
medium on the parameters of its oscillations, let us first c
sider the piecewise linear system with Dirichlet BC. Wh
the medium size slightly exceeds theLmin value, the motion
can be described as analmost in-phase~monotonic bulk!
oscillation. More precisely, the motion can be envisaged
considering the medium points as oscillators having the sa

FIG. 1. Dynamics of small LC regions~FHN model witha5
20.16, «50.005, d53). ~a! L57: the initial perturbation van-
ishes;v(t) is shown atx53. ~b! L510: the medium sustains a
oscillating response;v(t) is shown atx55. ~c! L510: monotonic
bulk oscillations of the medium;x profiles of the activatorv are
shown only during the time interval whenv increases from zero to
its maximum.
2-2
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REACTION-DIFFUSION DYNAMICS IN AN . . . PHYSICAL REVIEW E67, 036212 ~2003!
frequency but slightly different phases. To show this we ha
calculated in the phase plane (v,w) the so-called regula
isochrones, i.e., the lines displaying the values of (v,w) at
every point of the medium at specific selected times@15#.
The slight waviness of the outer edges of the isochrone l
indicates that the motion is not perfectly in phase~see, e.g.,
Fig. 2!. Note that a particular point of an isochrone ray a
tually represents the values of (v,w) at two spatial points,
say,x andL2x; this is due to mirror symmetry of the spati
profile.

For comparatively small sizes of the propagation medi
~Fig. 2!, phase variations are small, and the isochrones
pear almost linear. Since isochroneA is the one that includes
the absolute maximum of the value ofv, we specifically use
a linear approximation thereof in order to calculate it analy
cally. The time derivative is zero along this isochrone, a
the following approximate ordinary differential equation c
be obtained:

05vxx2Dv1H k1v for uvu,vc ,

2k2v1r c sgn~v ! for uvu.vc ,
~9!

whereD5(w/v)uvmax
is the appropriate slope of the isoc

rone.
Analytic solutions of Eq.~9! for different domain sizesL

are shown in Fig. 3. The middle sections of each curve
pear to be approximately constant. The largerL, the more
extended is this section. Such dynamics is reasonable s
increasingL reduces the influence of boundaries on the bu
It is important to note that this increase ofL results in the
increase of both the common periodT of the oscillating
points ~see below! and its maximum amplitudeAmax ~albeit
rather slightly! in the middle of the domain. The monoton
dependence ofT on L for the case of the piecewise linea
model is presented in Fig. 4~a!. For this system the change o
period can be understood as follows: extended domains
duce larger phase-plane trajectories, at least for the ce

FIG. 2. Phase portraits ofregular isochrones—lines indicating
location of first seven medium points, starting from the Dirich
BC at a given time~the piecewise linear model withk150.1, k2

521, «50.02). Time interval between nearest isochrones is c
stant, 10 time units, andL512. The deviation from linearity of the
isochrone lines suggests out-of-phase oscillations of the med
points.
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spatial positions. These trajectories are situated along
very close to, the linear null-cline sections of negative slo
for a longer part of the oscillation period. Since the mov
ment there is much slower, the period increases.

We have also calculated a similar dependence of the
riod T on L for the FHN system@Fig. 4~b!#. The function
obtained is slightly nonmonotonic; namely, the values oT
first decrease with increasingL, resuming their increase fo
larger L’s ~as in the piecewise linear system!. This initial
‘‘anomalous’’ decrease ofT can be explained by comparin
phase trajectories corresponding to different values ofL ~Fig.
5!. The oscillations of the less extended medium exhibit sl
motions in the vicinity of the unstable fixed point~0,0!. A
small increase ofL results in a displacement of the pha
trajectories away from the fixed point and a correspond
decrease ofT. Further increase ofL brings the motion back
into the dominance of the null-clines, and a ‘‘regular’’T vs L
dependence is observed.

V. PSEUDOREFLECTED WAVES

A further increase in the length of the LC domain resu
in the appearance of an interesting effect which we call ps
doreflection at the Dirichlet boundary~Fig. 6!. We use this
term to emphasize that the mechanism of the creation
these pseudoreflected waves~PRW’s! is quite different from
the usual reflection mechanism of optical or acoustic wav
The PRW phenomenon for a LC medium was previou
observed with different boundary nonuniformities~see@11#!.
However, the limiting case presented here, i.e., a uniform
domain with Dirichlet BC, allows us to gain a better unde
standing based on an analytical description, as well as s
important features of the phenomenon.

Along with the usual reversal of propagation directio
the pseudoreflection exhibits the unusual phenomena of
creases of the wavelength, the amplitude, and the perio
oscillations. These features, and especially the change o

t

-

m

FIG. 3. Analytic solutions corresponding to the piecewise line
model; shown are the maximum values ofv ~amplitudes! for dif-
ferent medium sizes:L510,12,14, andD>0,0.03,0.05@Eq. ~9!#,
respectively. An increase inL results in the increase of both th
amplitude and the period of the monotonic bulk oscillations. T
small circles represent exact numerical solutions~maxima! of
Eq. ~1!.
2-3
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RABINOVITCH, GUTMAN, AND AVIRAM PHYSICAL REVIEW E 67, 036212 ~2003!
riod, indicate that other sources of reflected waves h
emerged. These higher-frequency sources~drivers! appear
close to the Dirichlet boundaries. The piecewise linear mo
has been utilized to gain a quantitative description of t
effect.

Our simulations demonstrate that close to each bound
of the LC medium there exists a spatial transition zone c
sisting of oscillating points of the medium with monoton
cally increasing amplitudes away from the boundary. T
zone can be looked upon as an array of coupled nonunif
oscillators with different natural frequencies, which synch
nize to assume a common frequency, but move out of ph
with each other. Increasing the size of the medium causes
phase differences between the points of the transition zon
increase, eventually leading to the generation of propaga
waves. Wave generation is well known to appear even
infinite uniform LC media, were the wave profile is com
monly explained by a symmetry breaking bifurcation@2,16#.
In the transition region, however, the oscillators are all d
ferent, and one of them eventually assumes the role of
medium ‘‘driver.’’ If its precise location were known, on

FIG. 4. Variation of the periodT of monotonic bulk oscillations
as a function of the medium sizeL. ~a! The piecewise linear mode
with k150.1, k2521, «50.02; ~b! FHN model witha520.16,
«50.005,d53. Note the nonmonotonic behavior in the latter ca
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FIG. 5. The FHN model: phase portraits of the oscillations at
centers of spatial domains of different sizes.~a! L58, resulting in
T5184 time steps. Here the slow motion near the unstable fi
point ~d! is responsible for the comparatively largeT. ~b! L59,
resulting inT5182 time steps. In spite of a larger limit cycle loo
the value ofT decreases because the motion becomes more
tached from the fixed point.~c! L510, andT increases back to 184
time steps. The still larger limit cycle loop approaches the n
clines ~zero-velocity solutions!, leading to slower motion in their
vicinity.

.

2-4



e

e
he
th

ce

or

t
be

of
ion
ite

-

-

iu

iz
e
ve
n
in
be
tio

e

ly
e
u-
;

REACTION-DIFFUSION DYNAMICS IN AN . . . PHYSICAL REVIEW E67, 036212 ~2003!
would be able to describe the behavior of the entire LC m
dium by the dynamics of this single oscillator~SO!. The
‘‘natural’’ frequency of the medium driver should coincid
with the common frequency of all other oscillators in t
medium, and the location of the driver should determine
direction of the traveling waves.

FIG. 6. The pseudoreflected waves in a large-sized LC med
with Dirichlet BC for the piecewise linear model withk150.1, k2

521, «50.02. Time increases from bottom to top.~a! Regular
waves propagating away from the medium center where a local
initial pulse was launched;~b! these waves drop to zero at th
boundaries, but eventually a ‘‘source’’ of pseudoreflected wa
appears near the boundary, inside the medium, as explained i
text, sending waves in both directions. The inward moving tra
are annihilated by collisions with the regular waves. However,
cause the frequency of the PRWs is higher, the point of annihila
gradually shifts toward the medium center.~c! After a long time
only the PRWs are observed.~d! A stroboscopic picture of the
propagating and pseudoreflected waves; time difference betw
the strobes is 10 time units.
03621
-

e

VI. THE INTERNAL „SELF-GENERATED … DRIVER
OF PSEUDOREFLECTIONS

In order to simulate SO behavior, a very narrow spa
domain is examined in this section, wherev andw are non-
zero only on two grid points~one interval!. Since the depen-
dence on the diffusion coefficientD is quite important in this
context, it will be explicitly reinstated in the equations. F
Dirichlet BC, therefore, we havev i50, wi50 at the points
i 50,3, while ati 51,2, v iÞ0, wiÞ0. Evidently, sinceLmin 2

is expressed in units ofAD in Sec. III, the diffusion constan
should be drastically lowered for an oscillatory solution to
possible.

For the simple SO system, an analytical solution is
course possible. To see this we first show that the diffus
term can be converted to a simpler form. Consider the fin
difference version of this term withDx51. Sincev050 and
v15v2 , we have

Dvxxu i 515D~v21v022v1!52Dv1 . ~10!

A similar result is obtained fori 52. We can therefore re
placeDvxx by 2Dv, or to changek1 and2k2 of the piece-
wise linear system byDk52D. The piecewise linear sys
tem ~with d50) thus becomes

v̇52w1H ~k12D !v for uvu,vc ,

~2k22D !v1r c sgn~v ! for uvu.vc ,

ẇ5«v. ~11!
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FIG. 7. Dynamics of a single oscillator, made of two uniform
oscillating grid points with Dirichlet BC. Analytical solutions ar
shown for the piecewise linear model, coinciding with exact n
merical results.~a! The wave form of the SO during one period
diffusion coefficientD50. ~b! The SO period as a function ofD. ~c!
The SO amplitude as a function ofD. ~d! The SO period vs its
amplitude.
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RABINOVITCH, GUTMAN, AND AVIRAM PHYSICAL REVIEW E 67, 036212 ~2003!
Taking the derivative of the first equation and using the s
ond, we obtain

v̈52«v1K v̇,

where

K5H ~k12D ! for uvu,vc ~denoted byv I!,

~2k22D ! for uvu,vc ~denoted byv II !.
~12!

Since in our caseD,k1 , the solution foruvu,vc becomes

v I5A1e~k12D !t/2 cosgt1A2e~k12D !t/2 singt, ~13!

where t is measured from the time whenv5vc and g
5A«20.25(k12D)2. For uvu.vc the solution is

v II5C1el1t1C2el2t, ~14!

wherel1,250.5b2(k21D)6A(k21D)224« c.
The following conditions must be satisfied@Fig. 7~a!#:

at t50: v I5v II5vc and
]v I

]t U
0

5
]v II

]t U
0

;

at t5t1 : v II5vc and
]v I

]t U
t1

52
]v II

]t U
t2

;

FIG. 8. Determining the position of the PRW ‘‘driver’’ in a
piecewise linear model withL5100.~a! Spatial plot of the PRW at
t5830 time units; parallel lines near the left boundary (i 56 – 12)
indicate seven grid points;~b! local dynamics of these points in th
vicinity of their maxima. Point 8 is the first to reach the maximu
among its neighbors, thus ‘‘enforcing’’ its motion on them.
03621
-

at t25t12T/2: v I52vc .

The solution properties are shown in Figs. 7~b! and 7~c!. It is
clear that both the amplitude and period of oscillatio
change withD. Note that hereLmin 253 ~in units ofAD) and
no nonzero solutions exist forD>0.1, in agreement with
Sec. III. Figure 7~d! shows the functional dependence b
tween the amplitude and the period of the oscillations ofv. It
is seen that for a SO the higher the frequency~lower T! the
lower is the amplitude. Now, in order to drive a whole ‘‘se
of oscillators, a SO should have both a high amplitude an
high frequency. It is therefore a question of comprom
which oscillator of a set will eventually ‘‘take over’’ and
drive the whole oscillatory region.

In order to check which grid point of theextendedsystem
becomes the source of the ‘‘reflected’’ oscillations~driver!,
Fig. 8 shows the time dependence ofv i , i 56 – 11, where
v i max.vc (v i max5vc is situated betweeni 53 and 4! of an
oscillatory region of lengthL5100. Since the diffusion cur-
rent is proportional tov, it is the first grid point wherev
reaches its maximum relative to both its neighbors, to the
and to the right, that will drive the waves in both direction
In Fig. 8~b! this point appears to be ati 58, making this site
the ‘‘dominant SO.’’

Simulations show that varying the total lengthL does not
change this behavior, namely, the ‘‘sources’’ reside at

FIG. 9. FHN-based simulations of a ‘‘mosaic’’ model: five sep
rate LC sections of different sizes inside a uniform excitable m
dium. The section withL58 has the highest frequency according
Fig. 4~b!, thus becoming the medium driver. After a relatively lon
transient its natural period of 202 time units eventually domina
the whole medium. Time increases from bottom to top. Note th
unlike the case depicted in Fig. 4~b!, here the boundary condition i
not of Dirichlet type; hence this period is 202 instead of 184.
2-6
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REACTION-DIFFUSION DYNAMICS IN AN . . . PHYSICAL REVIEW E67, 036212 ~2003!
same pointsi 58 andL28. The consistency of this result i
supported by the following argument: The maximum amp
tude ~0.543 dimensionless units! of v8 of the extended sys
tem agrees very well with the SO@Fig. 7~d!#, having the
same period~50 time steps! as that of the waves of Fig. 8.

VII. DISCUSSION

The features of the dynamics of a LC medium of fin
length with Dirichlet BC have been discussed. Increasing
medium length leads to the following behavior:~a! for L
,Lmin , no sustained oscillations are present;~b! aboveLmin ,
a gradual increase of phase mismatch is observed; unti~c!
the appearance of a propagating train of waves and t
pseudoreflections. The mechanism of the PRW genera
can be envisaged as due to a fast wave ‘‘source’’ or ‘‘drive
inside the medium, near the boundary. The question of
internal driver of a LC medium is of general importanc
Here we have tried to define the properties of such an en
it is the oscillator that reaches its maximumv value prior to
all its neighbors. Thus, via diffusion it can influence t
neighboring oscillators on both sides, and become the so
~driver! of the pseudoreflected waves.

We wish to point out a number of possible important a
plications of our findings. The strong dependence of the
riod of the in-phase oscillations upon the medium size m
be of interest for various problems. For example, the pr
lem of an internal pacemaker of the sinus node~SN! arises in
the framework of the so-called mosaic model, where
s

J,

oc
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presence of excitable cells inside the sinus node is postul
@18#. A pacemaker is represented by the cluster of oscillat
cells, which determines the frequency of the SN in-pha
oscillations. Our results support the possibility of such
pacemaker and indicate that this could rather be a sectio
comparatively small size, although larger thanLmin ~see Fig.
4!, which has the highest oscillation frequency among
neighbors~Fig. 9!. It also follows that a relatively small~but
still aboveLmin) ectopic source in the heart might be mo
dangerous than a larger one, because it could oscillate w
higher frequency and lead to serious cardiac arrhythm
Another important problem of SN oscillations is the pos
bility of wave propagation there, as opposed to unison~in-
phase! oscillations. This type of wave motion was previous
discussed in some papers~see, e.g.,@19#!. These results are
consistent with our isochrone-based interpretation show
the development of out-of-phase~wavelike! motion.

The phenomenon of a source of pseudoreflections can
instance, be applied to the locomotion of a primitive fi
~lamprey!, which can be modeled as a nonuniform LC m
dium with an internal driver~the so-called master oscillator!.
This oscillator is faster than its neighbors, and thus de
mines the direction of wave propagation in an array of sim
lar surrounding oscillators having lower natural frequenc
@20#. Our results indicate that the driver should reside o
near either end of a fish of finite length, where Dirichlet-lik
boundary conditions exist, and should force the lamprey
move in each direction.
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